

BPT Diagnostic Diagrams

Chamani M. Gunasekera Space Telescope Science Institute

The Interstellar Medium

Stellar nursery N159 H II region

Pillars of Creation

Starlight propagating through ionized H II region

- Star forming (SF) ionized regions found near O & B stars
- H II regions interstellar region with mainly H⁺
- H II region elements come in two forms: gas & dust
- Most notable & useful emission lines: O III, O II, S II, N II

Grain Depletions in H II Regions

- · heavy element abundances are lower in the ISM than in solar abundances
- The degree of depletion varies between different elements.
- The collective depletion strengths of many heavy elements varied significantly across different sightlines

Heating & Cooling in the ISM

Electron temperature T_{e} = kinetic temperature of charged particles $_{-}$ for H II regions T_{e} $^{\sim}$ 10,000 K

Dominant Heating: Hydrogen Photoionization

 $H_{I} + hv \rightleftharpoons H_{u}^{+} + e^{-}$

- dust also contributes through photoelectric heating

Dominant Cooling: Inelastic electron-ion collisional excitation

 $e^{-} + X_u \rightleftharpoons X_l + e^{-}$

Calculating depleted abundances

Depletion
$$[X_{gas}/H] \equiv log\{N(X)/N(H)\} - log(X/H)_{\odot}$$
Jenkins (2009)
Depletion Model
$$[X_{gas}/H]_{F_*} = B_X + A_X(F_* - z_X)$$

Gas-phase Abundance

 $D_X = 10^{B_X + A_X(F_* - z_X)}$ $(X_{gas}/H)_{F_*} = (X/H)_{\odot} D_X$

Depletion Strength

 $0 \leq F_* \leq 1$

Baldwin, Philips, & Terlevich

The Classic BPT diagrams: [Ο III] 5007/Hβ vs. [N II] 6583/Hα

```
[O III] 5007/H\beta vs. [S II] 6716,6731/H\alpha
```

[O III] 5007/Hβ vs. [O I] 6300/Hα

Credit: Kauffmann (2003)

Cloudy Model

- SED: starburst99 model with continuous star formation history
- Age: 4 million years
- Background radiation: cosmic ray background, with local universe at redshift z=0
- Hydrogen density: 14 cm⁻³
- Equation of state using constant gas pressure
- Ionization parameter grid: $-4 \le \log U \le -2$
- Gas chemical composition:
 - Reference abundance: GASS
 - Metallicity scale factor: Z = 0.05, 1.0, 3.16
 - Depletion strength grid: $0 \le F_* \le 1$

table star "con sf0" age=4.0e6 years ionization parameter -4 vary grid range from -4.0 to -2.0 with 0.5 dex Background, z=0 Cosmic rays background hden 1.15 log constant gas pressure abundances GASS element helium scale 0.88000 element nitrogen scale 0.07070 element carbon scale 0.19028 #metals deplete metals deplete jenkins 2009 fstar 1e-10 print #grid list "fstar grid list.dat" grains ISM 0.430 metals and grains 0.05000 iterate to convergence stop temperature 100K stop efrac -2 print line sort wavelength range 1500A to 10000A save grid ".grd" save overview ".ovr" last #separate save continuum " con" units microns last #separate save cooling last ".col" last save line list ".line" "LineList.dat" column last #separate #save grain abundances ".grain" last #separate #print last iteration

Cloudy output files

0.900

1.000

1.000e+00

1.000e+00

1.000e+00

1.000e+00

5.390e-02

4.150e-02

				Loudy	(master, dir	do org	ea)						
					www.hubia	u0.019							
PRNG seed: 0xda3a31a80da0bba4													
		******	*****	*****	******13Jun	01******	*****	*****	****				
			*										
			*										
		>	>> *										
		>>> *											
		* ioniz	ation parame	ter -4 vary					*				
		* grid	range from –	4.0 to -2.0	with 0.5 dex				*				
		* Backg	round, z=0						*				
		* Cosmi	c rays backg	round					*				
		* hden	1.15 log						*				
		* const	ant gas pres	sure					*				
			*										
		* abund	ances GASS						*				
		* eleme	nt helium sc	ale_1.14787					*				
		* eleme	nt nitrogen	scale 0.3592	7				*				
		* eleme	nt carbon sc	ale 0.96698				*					
		* #meta	ls deplete						*				
		* metal	s deplete je	nkins 2009 f	star 0.5 pri	nt			*				
Jenkir	ns 2009, prin	nt set, foun	d Fstar = 5.	000e-01 limi	t = 1.000e+3	8							
GetJer	kins09: repo	ort of range	of depletio	n scale fact	ors follows:								
Fstar	HYDR	HELI	LITH	BERY	BORO	CARB	NITR	OXYG	FLUO	NEON			
0.000	1.000e+00	1.000e+00	5.675e-01	1.000e+00	4.989e+00	7.729e-01	7.780e-01	9.762e-01	1.000e+00	1.000e+00			
0.100	1.000e+00	1.000e+00	4.369e-01	1.000e+00	4.103e+00	7.551e-01	7.780e-01	9.269e-01	1.000e+00	1.000e+00			
0.200	1.000e+00	1.000e+00	3.364e-01	1.000e+00	3.374e+00	7.377e-01	7.780e-01	8.801e-01	1.000e+00	1.000e+00			
0.300	1.000e+00	1.000e+00	2.589e-01	1.000e+00	2.775e+00	7.208e-01	7.780e-01	8.357e-01	1.000e+00	1.000e+00			
0.400	1.000e+00	1.000e+00	1.993e-01	1.000e+00	2.282e+00	7.042e-01	7.780e-01	7.935e-01	1.000e+00	1.000e+00			
0.500	1.000e+00	1.000e+00	1.535e-01	1.000e+00	1.877e+00	6.880e-01	7.780e-01	7.534e-01	1.000e+00	1.000e+00			
0.600	1.000e+00	1.000e+00	1.181e-01	1.000e+00	1.544e+00	6.722e-01	7.780e-01	7.154e-01	1.000e+00	1.000e+00			
0.700	1.000e+00	1.000e+00	9.095e-02	1.000e+00	1.270e+00	6.568e-01	7.780e-01	6.793e-01	1.000e+00	1.000e+00			
0.800	1.000e+00	1.000e+00	7.002e-02	1.000e+00	1.044e+00	6.417e-01	7.780e-01	6.450e-01	1.000e+00	1.000e+00			

8.588e-01

7.063e-01

1.000e+00

1.000e+00

6.269e-01

6.125e-01

7.780e-01

7.780e-01

SODI

1.000e+00

1.000e+00

1.000e+00

1.000e+00

6.124e-01

5.815e-01

8.730e-04

1.406e-03

2.266e-03

3.650e-03

5.880e-03

9.473e-03

1.526e-02

2.459e-02

3.961e-02

6.381e-02

1.028e-01

MAGN

5.363e-01

4.263e-01

3.388e-01

2.693e-01

2.141e-01

1.702e-01

1.353e-01

1.075e-01

8.547e-02

6.794e-02

5.400e-02

.ovr

#depth Te Htot	hden eden	2H_2/H HI	HII HeI HeI	I HeIII	CO/C C1	C2 C3 C4	01 02 03	04 05 06	H2O/O AV(point) AV(extend) Tau	912
1.73025e+14 8.6691e+	03 5.362e-22	1.4100e+01	1.4598e+01	1.6163e-10	4.8114e-02	9.5189e-01	1.6622e-01	8.3373e-01	4.9161e-05	1.5569e-13	8.2043e-03	7.8500e-01
1.03815e+15 8.6642e+	03 5.366e-22	1.4132e+01	1.4606e+01	1.6207e-10	4.8099e-02	9.5190e-01	1.6641e-01	8.3354e-01	4.9074e-05	1.5554e-13	8.1946e-03	7.8525e-01
4.49865e+15 8.6496e+	03 5.354e-22	1.4156e+01	1.4632e+01	1.6390e-10	4.8215e-02	9.5179e-01	1.6730e-01	8.3266e-01	4.8680e-05	1.5685e-13	8.2332e-03	7.8629e-01
1.83406e+16 8.6154e+	03 5.315e-22	1.4218e+01	1.4677e+01	1.7112e-10	4.8970e-02	9.5103e-01	1.7070e-01	8.2925e-01	4.7239e-05	1.6376e-13	8.3713e-03	7.9018e-01
4.38099e+16 8.4821e+	03 5.230e-22	1.4462e+01	1.4914e+01	1.8445e-10	4.9177e-02	9.5082e-01	1.7621e-01	8.2375e-01	4.4945e-05	1.6872e-13	8.6044e-03	7.9648e-01
7.69200e+16 8.3805e+	03 5.151e-22	1.4649e+01	1.5077e+01	2.0411e-10	5.0650e-02	9.4935e-01	1.8392e-01	8.1604e-01	4.2111e-05	1.8384e-13	8.9066e-03	8.0456e-01
1.19963e+17 8.3082e+	03 5.070e-22	1.4790e+01	1.5154e+01	2.3373e-10	5.3693e-02	9.4631e-01	1.9487e-01	8.0509e-01	3.8699e-05	2.1373e-13	9.2999e-03	8.1497e-01
1.74062e+17 8.2727e+	03 5.009e-22	1.4903e+01	1.5169e+01	2.8043e-10	5.9148e-02	9.4085e-01	2.1083e-01	7.8914e-01	3.4672e-05	2.7167e-13	9.8338e-03	8.2841e-01
2.30652e+17 8.2777e+	03 4.964e-22	1.4972e+01	1.5097e+01	3.4384e-10	6.6701e-02	9.3330e-01	2.2966e-01	7.7030e-01	3.1023e-05	3.6356e-13	1.0401e-02	8.4223e-01
2 811//0+17 8 32580+	03 / 03/0-22	1 40570+01	1 40280+01	1 22830-10	7 619/0-02	0 22020-01	2 40070-01	7 50000-01	2 70760-05	4 00040-12	1 00170-02	9 550/0-01

.con

#Cont nu i	incident	trans Dift	fOut net <mark>tran</mark>	s reflc	total ref	lin outlin	lineID cont	nLine	
2.99293e+07 1	L.057e-14	8.203e-15	3.641e-12	3.649e-12	2.827e-12	6.476e-12	0.000e+00	0.000e+00	0.00
2.98297e+07 1	L.068e-14	8.299e-15	3.656e-12	3.664e-12	2.841e-12	6.505e-12	0.000e+00	0.000e+00	0.00
2.97304e+07 1	L.079e-14	8.397e-15	3.670e-12	3.679e-12	2.856e-12	6.534e-12	0.000e+00	0.000e+00	0.00
2.96315e+07 1	L.089e-14	8.496e-15	3.685e-12	3.693e-12	2.870e-12	6.563e-12	0.000e+00	0.000e+00	0.00
2.95329e+07 1	L.100e-14	8.596e-15	3.699e-12	3.708e-12	2.884e-12	6.592e-12	0.000e+00	0.000e+00	0.00
2.94347e+07 1	1.111e-14	8.698e-15	3.714e-12	3.723e-12	2.899e-12	6.621e-12	0.000e+00	0.000e+00	0.00
2.93367e+07 1	1.123e-14	8.800e-15	3.729e-12	3.737e-12	2.913e-12	6.651e-12	0.000e+00	0.000e+00	0.00
2.92391e+07 1	1.134e-14	8.903e-15	3.743e-12	3.752e-12	2.928e-12	6.680e-12	0.000e+00	0.000e+00	0.00

.col

#depth cm Temp H	K Htot erg/cm3/s	Ctot erg/cm3/	s Adve Ctot	erg/cm3/s	cool fracs								
1.73025e+14 8.6691	Le+03 5.3619e-22	5.3616e-22 0	.0000e+00 0	1 0.0	0.2736005	ISrcolH H	0.0	0.1594395	S 10.0	0.1403324	S 20.0	0.0812160	FF c 0.0
1.03815e+15 8.6642	2e+03 5.3655e-22	5.3660e-22 0	.0000e+00 0	1 0.0	0.2735254	ISrcolH H	0.0	0.1589860	S 1 0.0	0.1404775	S 20.0	0.0813064	FF c 0.0
4.49865e+15 8.6496	5e+03 5.3542e-22	5.3540e-22 0	.0000e+00 0	1 0.0	0.2732207	ISrcolH H	0.0	0.1576951	S 10.0	0.1410141	S 20.0	0.0814414	FF c 0.0
1.83406e+16 8.6154	4e+03 5.3153e-22	5.3149e-22 0	.0000e+00 0	1 0.0	0.2726785	ISrcolH H	0.0	0.1536768	S 10.0	0.1427816	S 20.0	0.0814329	FF c 0.0

Temperature vs. F*

- Te increases with F*
- Log U >= -2:

Ionized layer shrinks with increasing F*

• Log U <-2:

Ionized layer expands with increasing F*

