Preparing for High-Resolution X-rays in the Microcalorimeter Era

Chamani M. Gunasekera

STScI

High-resolution X-ray Spectra

Figure 3: Left: Chandra X-ray image of the Perseus cluster core, filtered to emphasize structures in the hot gas^[2]. Right: spectrum from the Perseus core (white square in the left panel) observed with *Hitomi's* microcalorimeter (black) and *Suzaku's* CCD imaging spectrometer (red). XRISM will provide similar high-resolution spectra in the 0.3 - 12 keV band for extended X-ray sources^[3].

From: Science with XRISM by XRISM science team

High-resolution X-ray Spectra

From: Science with XRISM by XRISM science team

High-resolution X-ray Spectra

s

n

From: Science with XRISM by XRISM science team

Previous Cloudy Formalism

From: Ferland et al (2017)

The transmitted continuum in the region around the Lyman jump. This is for our default model which includes "extra" Lyman lines extending to n = 100. The high-n Lyman lines merge into the Lyman continuum. The vertical line indicates the wavelength of the Lyman jump. The continuum resolution has been increased by a factor of ten above our default. Fine-Structure Splitting: Quantum Theory

Fine-Structure Splitting: Quantum Theory

$$H = \mu_e \cdot \mathbf{B}_N$$
$$\mathbf{B}_N \propto \mathbf{L}_e \qquad \mu_e = -\frac{e}{m} \mathbf{S}_e$$
Spin-Orbit Coupling $H \propto \mathbf{S} \cdot \mathbf{L}$
$$E_n^0 + E_{nj}^{FS} = m_e c^2 \left[1 + \left(\frac{\alpha Z}{n - k + \sqrt{k^2 - \alpha^2 Z^2}} \right)^2 \right]^{-\frac{1}{2}} - m_e c^2$$
Fine structure splitting
$$\begin{bmatrix} 2p (n = 1, l = 1) & 2p_{3/2} (j = 3/2) \\ 2s (n = 1, l = 0) & 2p_{1/2} (j = 1/2) \\ 1s (n = 1, l = 0) & Ly \cdot \alpha \end{bmatrix}$$

Bohr

Dirac

$$E_{nP} = E_n^0 + E_{nj}^{FS} + E_{n,l=1,j}^{LS} + E_{n,l}^M$$

$$E_{nP} = E_n^0 + E_{nj}^{FS} + E_{n,l=1,j}^{LS} + E_{nj}^M$$

Lamb Shift Correction:

$$E_{n,l>0,j}^{\text{LS}} = \frac{8Z^4\alpha^3}{3\pi n^3} Ry \left[\log \frac{Z^2 Ry}{K_0(n,l)} + \frac{3}{8} \frac{c_{lj}}{2l+1} \right]$$

$$c_{lj} = \begin{cases} (l+1)^{-1}, & j=l+1/2, \\ -l^{-1}, & j=l-1/2. \end{cases}$$

$$E_{nP} = E_n^0 + E_{nj}^{FS} + E_{n,l=1,j}^{LS} + E_{nj}^M$$

Lamb Shift Correction:

$$E_{n,l>0,j}^{\text{LS}} = \frac{8Z^4\alpha^3}{3\pi n^3} Ry \left[\log \frac{Z^2 Ry}{K_0(n,l)} + \frac{3}{8} \frac{c_{lj}}{2l+1} \right]$$

$$c_{lj} = \begin{cases} (l+1)^{-1}, & j=l+1/2, \\ -l^{-1}, & j=l-1/2. \end{cases}$$

Nuclear-mass Recoil Correction:

$$E_{nj}^{M} = m_{e}c^{2}\frac{m_{e}}{m_{N}}\frac{(\alpha Z)^{2}}{2N^{2}} - \mu c^{2}\left(\frac{m_{e}}{m_{N}}\right)\frac{(\alpha Z)^{2}}{2n^{2}}$$

$$N = \left(\left(n - k + \sqrt{k^2 - \alpha^2 Z^2} \right)^2 + \alpha^2 Z^2 \right)^{1/2}$$

where k = j + 1/2

Radiative Transfer:

$$n_{2p}A_{21}\beta_{net} = \sum_j n_{2pj}A_{2pj}\beta_j$$

Radiative Transfer:

$$n_{2p}A_{21}\beta_{net} = \sum_{j} n_{2pj}A_{2pj}\beta_j$$

j-changing transition: $nP_{3/2} \Leftrightarrow nP_{1/2}$

Radiative Transfer:

$$n_{2p}A_{21}\beta_{net} = \sum_{j} n_{2pj}A_{2pj}\beta_j$$

j-changing transition: $nP_{3/2} \Leftrightarrow nP_{1/2}$

Critical density: Collisional = Radiative Deexcitations Deexcitations

 $n_{\rm crit} = A_{\rm ul}/q_{\rm lu}$

Low-density limit: n_{gas} < n_{crit} Radiative > Collisions

High-density limit: n_{gas} > n_{crit} Radiative < Collisions

Radiative Trapping

Radiative Trapping

Simulating High-resolution X-rays

$$\begin{aligned} \overline{\beta} &\equiv k_{\rm c}/k_{\rm L} \\ k_{\rm L} &= \frac{N_1 B_{12} h \nu_0}{4\pi \Delta} \\ k_{\rm L} &= N_1 \kappa_{\rm L} \sqrt{\pi} / \Delta_{\rm v} \\ k(x) &= k_{\rm L} \frac{1}{\sqrt{\pi}} H(a, x) = \frac{N_1 \kappa_{\rm L}}{\Delta_{\rm v}} H(a, x) \\ \overline{k_{\rm L}} &\approx k(0) \sqrt{\pi} \end{aligned}$$

Hazy 1:

12.1.1 How many levels do we include?

Some models can include many hundreds to thousands of levels. The strongest lines tend to come from lower levels, although high levels can be quite important at high densities. Very large models, with the greatest number of levels, give the best spectroscopic accuracy but can take quite some time to compute. By default we include an intermediate number of levels, chosen as a compromise between execution time and an adequate model of the emission and cooling. The default number of resolved and collapsed levels can be found in LineLabels.out in the CLOUDY docs directory.

#index	label	wavelength	comment	
0	zero		0	# type: i, null placeholder
1	Unit		1.00000A	<pre># type: i, unit integration placeholder</pre>
2	UntD		1.00000A	<pre># type: i, unit integration placeholder</pre>
####	general	properties.		
3664	H 1 M1	8	1215.67A	# type: t, index=1, 2 Elow=0 H-like, 1^2S - 2^2S
3669	H 1		1215.67A	# type: t, index=1, 3 Elow=0
3674	H 1		1025.72A	# type: t, index=1, 5 Elow=0
3679	H 1		972.537A	# type: t, index=1, 8 Elow=0

>> cloudy/docs/LineLabels.txt

>> cloudy/docs/LineLabels.out: number of levels in the atomic model

Number	Number of levels in ions treated by iso sequences.									
ISO	Element	hi-n(l-r	esolved) #(l-resolved)	n(collapsed))					
H-like	e H	10	55	15						
H-like	e He	10	55	15						
H-like	e Li	5	15	2						
H-like	e Be	5	15	2						
H-like	e B	5	15	2						
H-like	e C	5	15	15						
H_lik	e N	5	15	15						
H-like	e Fe	10	55	15						

Hazy 1: 12.2.2 Species "name" levels=[10,all]

This option allows the number of levels used in modelling the species to be altered from the default value, within the bounds of the transition rate data available to CLOUDY. The command

```
species "O+" levels=10
```

runs a model with 10 levels for the O^+ ion, rather than the default value.

Using **=all** rather than a numeric argument requests the maximum available number of levels. The equal sign is part of the keyword and must be specified with no space between it and **all**.

>> cloudy/docs/LineLabels.out: number of levels in the atomic model

Number of levels in ions treated by iso sequences.									
ISO	Element	hi-n(l-re	esolved) #(l-resolved)	n(collapsed))				
H-lik	e H	10	55	15					
H-lik	e He	10	55	15					
H-lik	e Li	5	15	2					
H-lik	e Be	5	15	2					
H-lik	e B	5	15	2					
H-lik	e C	5	15	15					
H-lik	a N	5	15	15					

Fe K blends in the current Cloudy:

>> cloudy/data/blends.ini

Fe XXVI 2s1/2 + 2p1/2 set blend 1.78337 quiet "Fe26 M1" 1.78330A "Fe26" 1.78344A end ## Fe XXVI K alpha set blend 1.77982 quiet "Fe26" 1.77802A "Fe26 M1" 1.78330A "Fe26" 1.78344A end

- Note: some old Fe K lines that used to be in cloudy have now been removed. e.g. Fe K cold

If you are interested please ask me!

Database H-like Lyman extra resolution 0.25

The nP to 1s lines of the H-like isoelectronic sequence are resolved into the fine-structure components. This commands determines down to which atomic species Z and upto which principle quantum number n the nP levels are resolved to nPj=1/2 and nPj=3/2 levels. The default resolution has been set to 1/10 in eV of the Athena high-resolution X-ray mission, 0.25eV.

This command does not affect the model atoms for HI and HeII.

Some physics Cloudy can help us understand

set save preflix "Perseus_Ngrd" constant temperature 4.7e7K iterate hden -1.5 metal solar 0.65 linear stop column density 24 vary grid 18 25 0.25 turbulence 150km/s print line optical depths print line column print line sort wavelength print line faint off -10 save grid ".grd" last no hash save line list absolute ".lin" last no hash "linelist_fe_master.dat"

Perseus Cluster Core via Chandra

linelist_fe_master.dat

Fe26	1.78344A	# j=3/2
Fe26	1.77802A	# j=1/2
blnd	1.77982A # Fe26	Ka blend
blnd	1.50273A # Fe26	Kb blend
Si14	6.18584A # Si14	Ka1
Si14	6.18043A # Si14	Ka2
blnd	6.18222A # Si14	Ka blend
blnd	5.21719A # Si14	Kb blend

Some physics Cloudy can help us understand

<pre>set save preflix constant tempera iterate hden -1.5 metal solar 0.65 stop column dens grid 18 25 0.25 turbulence 150km print line optic print line sort print line sort print line faint save grid ".grd"</pre>	<pre>c "Perseus ature 4.7e b linear b linear b linear b linear c l</pre>	_Ngrd" 7K ry h					
save line list a	bsolute "	.lin" last no h	ash "linelist_fe_	_master.	dat"		
Perseus_Ngric	l.grd						
#Index Failu	re?	Warnings?	Exit code	#rank	#seq	STOP COLU	grid parameter string
000000000	F	F	ok	6	0	18.000000	18.000000
000000001	F	F	ok	7	0	18.250000	18.250000
000000002	F	F	ok	8	1	18.500000	18.500000
00000003	F	F	ok	10	0	18.750000	18.750000
Perseus Ngric	l.lin						
#lineslist	Fe26 1.78	344A Fe26 1.7786	2A blnd 1.77982A	blnd 1	.50273A		
iteration 2	7.8612e-1	0 1.5770e-09	2.3941e-09	2.4615	e-10		
iteration 2	iteration 2 1.3979e-09		4.2575e-09	4.3772	e-10		
iteration 2 2.4860e-09		9 4.9870e-09	7.5711e-09	7.7838e-10			
iteration 2	4.4208e-0	9 8.8684e-09	1.3464e-08	1.3842	e-09		

